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In a recent discussion E. A. Desloge has performed an analysis of the kinematic 
nonequivalence of a uniformly accelerating reference frame (UAR) and a frame 
at rest in a uniform gravitational field (UGF). Desloge considered two- 
dimensional space-times. We here review the geometrical description of gravity 
in two, three, and four space-time dimensions in order to discuss the dynamical 
nonequivalence of UAR and UGF both in two and in four space-time dimensions. 
We also consider the motion of photons in UAR and UGF in order to illustrate 
some relativistic effects of a kinematic nature. 

1. I N T R O D U C T I O N  

Recently there has been a significant amount  of  research on the proper-  
ties of  space-times of  two dimensions (Brown, 1988; Brown et al., 1986; 
Calheiros and Maia, 1988; Katanaev and Volovich, 1990; Sanches, 1986; 
Jackiw, 1985; Gegenberg et al., 1988; Mann et al., 1990, 1991; Sikkema and 
Mann,  1991; Kelly and Mann, 1991; Mann, 1991; Xu and Zhu, 1991; 
Schmidt, 1991; Mohammedi ,  1990) and three dimensions (Staruszkiewicz, 
1963; Collas, 1977; Clement, 1976, 1985, 1990; Got t  and Alpert, 1984; Gott  
et al., 1986; Giddings et al., 1984; Deser et aL, 1984; Deser and Jackiw, 
1984; Deser and Mazur, 1985; Deser, 1985; Deser and Laurent, 1986; Deser 
and Jackiw, 1989; Jackiw, 1990; Deser, 1990; Barrow et al., 1986; Melvin, 
1986; Dereli and Tucker, 1988; Hall et al., 1987; Burges, 1985; Bezerra, 
1987; Vurio, 1985; Percacci et al., 1987; Brown and Henneaux,  1986; Nutku 
and Baekler, 1989; Grignani and Lee, 1989; Ortiz, 1990a,-c; Menotti and 
Seminara, 1991; Ishida et al., 1990; Linet, 1990; Fujiwara and Soda, 1990; 
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Soda, 1990; Ward, 1990; Keszthelyi et al., 1991; Cho et al., 1991; Williams, 
1991; Waelbroeck, 1991; Cornish and Frankel, 1991; Duncan and Ihrig, 
1991). 

There are several reasons for this interest in lower-dimensional gravity. 
Jackiw (1985) has stated that his principal reason for studying such models 
is pedagogical, and proceeds: "Just as lower-dimensional, nongravitational 
field theories are used for studying effects relevant to our world, (e.g. 
spontaneous symmetry breaking, anomalies, confinement, solitons, phase 
transitions, and tunnelling etc.), so also I hope that lower dimensional 
gravity can illuminate the physical four (and possibly higher) dimensional 
models." Furthermore, he notes that three-dimensional field theories 
provide a phenomenological description of four-dimensional physics at 
high temperature. 

Also, it has turned out that two- and three-dimensional theories of 
gravity have provided a deeper insight into the theory of strings. For 
example, the solutions of the field equations for point masses in (2+ 1)- 
dimensional space-time lead directly to the solutions for strings in (3 + 1)- 
dimensional space-time (Barrow et al., 1986; Gott, 1985). 

In a recent article Desloge (1989) has investigated the "nonequivalence 
of a uniformly accelerating reference frame and a frame at rest in a uniform 
gravitational field" by considering two-dimensional space-times. His dis- 
cussion and conclusions are interesting. These two-dimensional space-times 
have independently been investigated by Tagaki (1989). 

We shall here discuss how far Desloge's work can be taken over to 
four space-time dimensions. In this connection it is important to make the 
distinction between relativistic kinematics and relativistic dynamics. In 
relativistic kinematics the line element is given and one investigates the 
motion of free particles as given by the timelike or lightlike geodesic curves 
in space-time. In relativistic dynamics one considers the effects of matter 
on the curvature of space-time, as given by Einstein's field equations. 

Desloge performed a kinematic analysis of a two-dimensional space- 
time. We shall extend his investigation and make a dynamical investigation 
of the space-time he considered, and of the corresponding four-dimensional 
space-time. 

2. TWO-DIMENSIONAL SPACE-TIMES 

According to the general theory of relativity the space-time geometry 
is obtained from the field equations 

G ~ , ~ - A g ~ = - K T ~ ,  K =8~rG/c4 (1) 
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Here A is the cosmological constant, g~,~ the metric tensor, T~,~ the energy- 
momentum density tensor, and G ~  the Einstein curvature tensor 

G.~ = R ~  - (1/2)Rg~.~ (2) 

R.~ is the Ricci tensor and R = R~'~, the Ricci curvature scalar. The Ricci 
tensor is the contracted tensor R~.~ = R~.,~. The Riemann curvature tensor 
R , . ~  contains the complete information about the geometry of space-time. 

In two-dimensional space-times there is only one independent com- 
ponent of the Riemann curvature tensor, say R1212. It represents the 
Gaussian curvature K of the two-dimensional space-time (Weinberg, 1972) 

K = -R1212/g (3) 

where g is the determinant of the metrical tensor. The Ricci tensor and the 
Ricci curvature scalar can now be expressed as 

R,~ = -Kg~,~, R = - 2 K  (4) 

It follows that the Einstein curvature tensor vanishes for every two- 
dimensional space-time. 

Thus, every two-dimensional space-time with A = 0 must have vanishing 
energy-momentum tensor, and there is no dynamical theory of space-time. 
As stated by Jackiw (1985), "Gravity on a line must be invented anew." 

The commonly adopted equation for two-dimensional gravity is the 
constant curvature equation 

R + bA = 0, b = const (5) 

Desloge (1989) considered the line element 

ds  2 =  OL2(X)C 2 d t 2 - d x  2 (6) 

In this case the field equation (5) takes the form 

a " - 2 b A a  =0  (7) 

The general solution is 

a = C l  eHX+C2e -Hx, H = ( 2 b A )  1/z, b A > 0  (8) 

a = C1 cos(Hlx) + C2 sin(Hlx),  H1 = (-2bA) 1/2, bA < 0 (9) 

a = C l + C 2 x ,  A = 0  (10) 

Desloge discussed two particular line elements of the form (6), namely 

ds 2 = e2gX/C2c2 d t  2 - dx 2 (11) 

and 

{ .  , gx'~ 2 2 
ds2=/ l+---ZJ  c d t 2 - d x  2 (12) 

\ c - /  
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Using the geodesic equation, Desloge showed that the acceleration of a 
free particle instantaneously at rest in a space-time described by the line 
element (11) is the same, equal to g, at all points in the field. This line 
element represents a rigid frame in a uniform gravitational field. The line 
element (12), on the other hand, represents a uniformly accelerated rigid 
frame in fiat space-time. Desloge used these line elements to discuss to what 
extent observations made in a rigid enclosure at rest in a gravitational field 
are not equivalent to observations made in a rigid enclosure that is uniformly 
accelerated in field free space. 

The line element (11) is obtained from (8) by choosing C1 = 1, C2 = 0, 
b =.,292/c4A, which according to equation (5) gives R = -2g2 /c  4. The line 
element (12) is obtained by putting C1 = 1, C2 = g /c  2 in equation (10). 

Some interesting properties of the space-time described by the line 
element (11) should be noted. Takagi (1989) has shown that this space-time 
is geodesically incomplete. He found its maximal analytic extension and 
noted its relation to the anti-de Sitter space-time. 

Mann (1991) has made a detailed study of two-dimensional space-times 
described as solutions of the field equations (5) (generalized by including 
a source-term proportional to the trace of the energy-momentum tensor). 
In particular he constructed a solution described by (8) in a region Ixl < 
and by (10) for Ixl_> where ao is a boundary position. He showed that 
this solution represents an (l+l)-dimensional analog of the (3+ 
1)-dimensional false vacuum bubble solution. He also discussed two- 
dimensional black-hole solutions. 

Let us summarize our results so far. In two-dimensional space-time, 
the Einstein curvature tensor vanishes identically. Thus, the general theory 
of relativity has no dynamical equations as applied to two-dimensional 
space-time. Recently, however, researchers on two-dimensional space-times 
have used a theory based upon the field equation (5). If this is applied to 
the particular line elements (11) and (12) considered by Desloge, one finds 
that they correspond to two different situations. Equation (11) represents 
space-time with constant, negative curvature and a nonvanishing cosmologi- 
cal constant, while (12) represents Minkowski space-time with reference to 
a uniformly accelerated frame. 

3. THREE-DIMENSIONAL SPACE-TIMES 

We are now going to consider "gravity on a surface" according to 
general relativity. In this case space-time is three-dimensional, and the 
Riemann curvature tensor can be expressed by the Einstein tensor as follows 
(Jackiw, 1985) 

R~m,~ = -e~e~ ,~sG ~ (13) 
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where e,~v is the completely antisymmetric tensor. In the absence of matter, 
and with vanishing cosmological constant, the Einstein tensor vanishes. 
Then R , ~  = 0. Thus, every three-dimensional vacuum space-time with 
A = 0 is flat. 

In the case of a vacuum with A ~ 0, the field equations can be written 
(Sanches, 1986) 

R ~ m , ~  = A ( g , , g o ~  - g , ~ g , ~  ) ( 1 4 )  

All spaces that are solutions of (14) are of  constant curvature. For A >  0 
one gets a three-dimensional version of the de Sitter space-time (Jackiw, 
1985). 

Even if the vacuum field equations with A = 0 outside a particle are 
solved only by flat space-time, there are interesting nonlocal properties of 
this solution. The three-dimensional space-time outside a particle was first 
described by Staruszkiewicz (1963) and has later been thoroughly examined 
in several works (Clement, 1976, 1985, 1990; Gott and Alpert, 1984; Gott 
e t  a l . ,  1986; Giddings e t  a l . ,  1984; Deser e t  a l . ,  1984; Deser and Jackiw, 1989). 

Space-time outside a particle of mass M is described by the line element 

( d s  2 = c 2 d t  2 -  1 - - ~ - ~  M d r  2 -  r 2 d d ~  2 (15) 

The transformation 

K M 4>' __..K__K M ~b (16) r '=  1 - 7  r, = 1 

leads to 

d s  2 = c 2 d t  2 - d r  '2 - r '2 dq~ 2 (17) 

which represents flat space-time. But the limits of ~b' are different from the 
limits of ~: 0 -  < ~b-< 2~r and 0 -  < ~b'---2~r- KM. The line element (17) thus 
describes a cone with angle deficit KM at its induced by the presence of mass. 

The four-dimensional space-time outside a fight, infinitely long, cosmic 
string is quite similar, with an angle deficit proportional to the mass per 
unit length of  the string (Francisco and Matsas, 1989). 

Even if space-time is flat, light passing the string is deflected with an 
angle equal to the angle deficit of the cone. 

Three-dimensional space-times generated by circular and straight 
strings with and without tension have been thoroughly investigated by Deser 
and Jackiw (1989). Furthermore, it was noted by Barrow (1986) that by 
reduction of the four-dimensional domain-wall solution of Vilenkin (1983) 
one obtains a (2 + 1)-dimensional line source with metric 

d s  2 = e - k l x l ( d t  2 -- d x  2 - e kt d y  2) k = const (18) 
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Since three-dimensional space-time is flat in vacuum between point masses, 
there is no gravitational attraction between particles. This also means that 
the three-dimensional version of  general relativity has no Newtonian limit, 
since in Newtonian theory particles attract each other in two space 
dimensions (Clement, 1985; Barrow e t  a l . ,  1986). 

The properties of a space-time described by the line element (6) are 
similar in three- and four-dimensional space-times, and will be discussed 
in the next section. 

4. F O U R - D I M E N S I O N A L  SPACE-TIME 

We shall now investigate the four-dimensional generalization of the 
line element (6) that was studied by Desloge (1989), 

d s  2 = a 2( x ) r 2 d t  2 - d x  2 - dy 2 - dz 2 (19) 

The only nonvanishing components of Einstein's curvature tensor are 

Gyy  = Gzz  = --O~"/ ol (20) 

The field equations (1) then take the form 

Too = (A/K)a  2, Tll = - A / K  (21) 

T22 = T33 = ( c 4 / 8 " n ' O ) ( a " / a  - A) (22) 

In the case of a vanishing cosmological constant the vacuum equations 
reduce to a " =  0. This case represents fiat space-time. The solution is given 
in equation (10). (72 = 0 gives the Minkowski metric in an inertial reference 
frame, and C2 ~ 0 gives the metric in a uniformly accelerating reference 
frame, which may be written 

( d s  2 = 1 + c 2 d t  2 - d x  2 - d y  2 - d z  2 (23) 

Let us consider the solution corresponding to the line element (11), 

d s  2 = e 2gx/c2r 2 d t  2 - d x  2 - d y  2 - d z  2 (24) 

Substituting this into equations (21) and (22) leads to 

T O = T ]  = ( c 4 / 8 7 r G ) A ,  T29 = T~  = ( 1 / 8 ~ G ) ( c 4 A  - g2) (25) 

Neither with A = 0 nor with A # 0 does the line element (19) represent a 
vacuum solution of Einstein's field equations. If  A -- 0, equation (25) gives 

T O T1 0, 2 = = T 2  = T~  = - g Z / 8 ~ ' G  (26) 

This represents a medium with vanishing rest mass density and with stresses 
parallel to the symmetry plane. The properties of  this medium are not 
physically acceptable. We now consider the case A > 0. 
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Depending upon the value of  A, there are several types of  sources for 
the solution (24). We shall now consider two cases. 

A. If  A =  g2/c4, equation (25) gives 

TO= Zl = g 2 / 8 7 r G ,  T 2 : T 3 = 0 (27) 

This is an anisotropic medium with vanishing stresses along the yz  plane 
and maximal compression in the x direction. The pressure p in this direction 
and the density p of  the medium are connected by 

p = pc 2 (28) 

An isotropic medium of this type is called a Zel 'dovich fluid. In such a 
fluid the sound velocity is equal to the velocity of  light c. 

B. The trace of  the energy-momentum tensor is 

T = T O + Tl1-1- T 2 + T33 = (1/47rG)(2c4A - g2) (29) 

I f  A = g2/2c4,  the trace vanishes and 

T~ = ( g 2 / 1 6 ~ G )  diag(1, 1, -1 ,  - 1 )  (30) 

This energy-momentum tensor represents a parallel electrostatic field 
(McWittie, 1929). According to this interpretation the line element, (24) 
represents a plane-symmetric universe with nonvanishing cosmological con- 
stant filled with an electrostatic field. An interpretation with the electrostatic 
field replaced by a magnetostatic field is also possible. 

We have seen that the line element (19) does not permit a vacuum 
space-time except when a " = 0 .  The simplest static, plane-symmetric 
generalization of  this line element is 

ds 2 = a2(x)c 2 dt  2 - dx  2 - fl2( x )(  dy2 + dz  z) (31) 

Solving the vacuum field equations with A = 0 for this line element, one finds 

ds 2 = \{1-3gx~-2/3c2dt2-dx2-(lc2 ,] -'--~']3gx~4/3(dy2+dz2) (32) 

The physical interpretation of  this solution has been given by Amundsen 
and G r i n  (1983). It describes the parallel gravitational field outside a 
massive plane of  infinite extension. 

5. KINEMATIC PROPERTIES OF THE SPACE-TIMES 

The space-time of  the uniformly accelerated reference frame described 
by the line element (23) is flat. There is a metric singularity at x = - c 2 / g ,  
where g,  = 0. Light emitted from a source at this position toward x = 0 is 
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infinitely red-shifted, and no information can pass from an event at x < 
- c 2 / g  through this plane. It is therefore called an event horizon. Because 
space-time is fiat, this event horizon is a property of the reference frame, 
which may be transformed away by going into, for example, an inertial 
frame. The horizon is not an invariant property of  space-time. The space-time 
described by the line element (24) is curved, but free of  any horizon. The 
space-time curvature is due to the nonvanishing cosmological constant and 
the electrical field energy. 

The line element (32) represents a vacuum solution of  Einstein's field 
equations with A = 0. It describes a curved space-time. The curvature is due 
to the existence of  a massive plane at x = 0. The curvature diverges at a 
coordinate distance Xo = c2/3g from the massive plane. Since gxx = -1 ,  this 
is just the physical distance to the curvature singularity as measured by 
standard measuring rods at rest in the x direction. The length of  coordinate 
unit rods parallel to the.yz plane shrinks by a factor (1--3gx/c2) 2/3 w i t h  

increasing distance from x = 0. Thus, the geometry of  the xyz space may 
be compared to that of a birdcage of  height c2/3g. 

As pointed out by Desloge (1989), the gravitational field of  acceleration, 
i.e., the acceleration of a free particle instantaneously at rest as measured 
with standard clocks at rest in the reference frame, is uniform in the 
space-time (24), but not in (23). As an illustration of  the different kinematic 
properties of  these space-times, we shall now calculate the paths of photons 
emitted from x = a, y = b, z = 0 in the y direction. 

We make use of  the fact that Fermat's principle is valid in a static 
space-time (Misner et al., 1973). This means that in the present case light 
(a photon) follows a path such that the coordinate travel time t is extremal. 

Consider a light ray in the xy plane. The space-time interval between 
events on the curve vanishes. With the line element (19) this gives 

ce 2( x ) c 2 dt 2 - dx 2 - dy 2 = 0 (33) 

Thus, the coordinate travel time is given by 

ct = f a - l ( x ) ( d x 2  + dy) 1/2 (34) 
3 

o r  

where 

ct = f f dy (35) 

f [ x ,  x'(y)]  = o~-l(x)[ 1 + x'(y)]  1/2 (36) 
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Since f does not depend explicitly upon the argument y, and since the 
integral (35) is extremal according to Fermat's principle, we may write 
down a quantity which is conserved along the path (Stephani, 1982) 

df 
x ' (y )  - f  = const (37) 

dx ' (y)  

This quantity corresponds to the Hamiltonian in classical mechanics 
(Goldstein, 1980). 

In our case equation (37) leads to 

ol- ' (x)[  1 + x'(y)2] -'/2 --- a - l ( a )  (38) 

which may be written 

y' = a (x ) [a2 (a )  - a2(x)] -1/2 (39) 

This equation is easily integrated for the two metrics in question. 
Inserting the metric (23), i.e., a = 1 + g x / c  2, we get the result 

(x  + c2/g)2+ (y - b) 2 = (a + cZlg) 2 (40) 

which describes a circle with center in ( -c2 /g ,  b) and radius a + c2/g. 
This path illustrates an interesting and nontrivial property about the 

kinematics of  flat space-time as referred to a uniformly accelerated reference 
frame. Even though 3-space is Euclidean, a photon starting out with velocity 
c in the y direction ends up by moving into the horizon at x = - c 2 / g  without 
any motion at all in the y direction. This is possible because of  the gravita- 
tional time dilation in a gravitational field. The velocity of  light is constant 
and equal to c as measured locally, but an observer, for example, at x = 0 
will measure a decreasing light velocity as the photon approaches the 
horizon, in accordance with redshift measurements, which shows to that 
observer that time goes slower far down in the gravitational field near the 
horizon. 

Inserting the line element (24) of  Desloges' uniform gravitational field, 
i.e., ~ = e gx/c2, we get from equation (39) the solution 

y - b = (c2/g) a r c c o s  e g ( x - a ) / c 2  (41) 

o r  

x - a = (c2/g) In cos[g(y - b ) / c  2] (42) 

We see that all curves have the same shape (independent of  a and b). 
We also note that y - b  is restricted to the interval (-�89162 �89 

This means that two obServers whose horizontal distance is larger than 
~rc2/g cannot communicate directly by a light signal. 
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The curves given by equations (40) and (42) agree with those recently 
found by Desloge (1990). 

6. CONCLUSION 

The geometrical descriptions of gravity on a line and gravity on a 
surface have been reviewed. Some main points are as follows. 

A. General relativity cannot describe two-dimensional space-times, 
because the Einstein curvature tensor is identically zero in this case. 
However, there exists a commonly accepted theory of gravity on a line. 
According to this theory, empty two-dimensional space-time has constant 
curvature. 

B. According to Einstein's field equations, empty three-dimensional 
space-time with A = 0 is flat. Point particles do not attract each other, and 
there is no Newtonian limit. 

In general there 'is great difference between gravity on a line, on a 
plane, and in space. Desloge investigated kinematically the nonequivalence 
of a uniformly accelerating reference frame and a frame at rest in a uniform 
gravitational field, by studying a two-dimensional line element. He obtained 
some interesting results. One would like, therefore, to know the dynamical 
character of the space-time upon which he based his kinematic analysis 
and of its four-dimensional extension. 

We have investigated this question in the present work. Our results can 
be summarized as follows. 

C. The two-dimensional uniform gravitational field of Desloge, given 
by equation (11), cannot be extended to four-dimensional space-time 
without introducing a nonvanishing energy-momentum density tensor. 

D. The four-dimensional extension of Desloge's line element can be 
interpreted to describe a plane-symmetric universe with A > 0 and an elec- 
trostatic or a magnetostatic field. 

E. Einstein's field equations do not permit the existence of empty 
space-time with a uniform gravitational field, i.e., a field in which the proper 
acceleration of a free particle instantaneously at rest is the same everywhere 
in the field. 

F. The closest one can come to a uniform gravitational field in empty 
four-dimensional space-time is the parallel gravitational field outside a 
massive plane of infinite extension, described by the line element (32). 

Finally, part of Desloge's illustration of the different kinematic proper- 
ties of space-time in a uniformly accelerated reference frame and in a 
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u n i f o r m  g r a v i t a t i o n a l  field has  b e e n  w o r k e d  o u t  in  a n e w  way,  c o n f i r m i n g  
the  va l i d i t y  o f  D e s l o g e ' s  resul ts .  
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